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Resting-state functional Magnetic Resonance Imaging (rs-fMRI)
has been extensively used for diagnostic classification because it
does not require task compliance and is easier to pool data from
multiple imaging sites, thereby increasing the sample size. A
MATLAB-based toolbox called Machine Learning in NeuroImaging
(MALINI) for feature extraction and disease classification is pre-
sented. The MALINI toolbox extracts functional and effective con-
nectivity features from preprocessed rs-fMRI data and performs
classification between healthy and disease groups using any of 18
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popular and widely used machine learning algorithms that are
based on diverse principles. A consensus classifier combining the
power of multiple classifiers is also presented. The utility of the
toolbox is illustrated by accompanying data consisting of resting-
state functional connectivity features from healthy controls and
subjects with various brain-based disorders: autism spectrum
disorder from autism brain imaging data exchange (ABIDE), Alz-
heimer's disease and mild cognitive impairment from Alzheimer's
disease neuroimaging initiative (ADNI), attention deficit hyperac-
tivity disorder from ADHD-200, and post-traumatic stress disorder
and post-concussion syndrome acquired in-house. Results of
classification performed on the above datasets can be obtained
from the main article titled “Supervised machine learning for
diagnostic classification from large-scale neuroimaging datasets”
[1]. The data was divided into homogeneous and heterogeneous
splits, such that 80% could be used for training, model building and
cross-validation, while the remaining 20% of the data could be
used as a hold-out independent test data for replication of the
classification performance, to ensure the robustness of the classi-
fiers to population variance in image acquisition site and age of the
sample.

© 2020 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Value of the Data
� Our data can be used for replication, benchmarking and testing the performance of variousmachine learning algorithms to

classify neurological diseases.
� These datasets would provide machine learning enthusiasts, who are not from the field of neuroimaging, an opportunity

to explore disease classification without any prior knowledge or experience in either neuroscience or neuroimaging.
However, researchers from outside the field of neuroimaging must familiarize themselves with the nuances, caveats, and
limitations of the application of machine learning to questions of clinical diagnosis using neuroimaging-derived features
before using these methods [1e3].

� The MALINI toolbox provides a one-stop solution for extracting the BOLD time series from regions in the CC200 template
[4] and other brain parcellation templates, calculation of connectivity-based features from pre-processed fMRI data, and
disease classification from the extracted features.

� The toolbox we include has 18 different machine learning algorithms embedded within it which can be used for disease
classification. Further, consensus classification, by combining inferences from multiple classifiers, is also available. The
code in the toolbox can be modified to include other machine learning classifiers as well.
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1. Data

We utilized resting-state functional magnetic resonance imaging (rs-fMRI) data from several open-
source neuroimaging databases such as autism brain imaging data exchange (ABIDE), Alzheimer's
disease neuroimaging initiative (ADNI) and attention deficit hyperactivity disorder (ADHD-200)
sample. The data also includes post-traumatic stress disorder (PTSD) data acquired at the Auburn
University MRI Research Center. Along with this paper, we present tables with functional connectivity
features from the 4 disorders/diseases for homogeneous and heterogeneous splits of the data for
training/validation and testing as excel files. More information about the data and the splits can be
obtained from the main paper corresponding to this article: Lanka et al. (2019) [1]. Tables with the
labels corresponding to brain structures for the functional connectivity paths are included as well as
excel files. The toolbox contains MATLAB script files for implementing machine learning algorithms.

2. Experimental design, materials and methods

Resting-state functional connectivity was estimated using data obtained from the ABIDE database
which includes 556 healthy controls, 93 with Asperger's syndrome and 339 with Autism [5]. More
information about the data can be obtained from http://fcon_1000.projects.nitrc.org/indi/abide/index.
html. The data for ADHD was released by the ADHD-200 consortium [6]. The ADHD-200 dataset in-
cludes 573 healthy controls, 208 subjects with ADHD-C (Combined), 13 subjects with subtype ADHD-H
(hyperactive), and 136 subjects with ADHD-I (inattentive), a total of 930 subjects [8]. Further infor-
mation can be obtained from http://fcon_1000.projects.nitrc.org/indi/adhd200. Data for the mild
cognitive impairment (MCI) and Alzheimer's disease was obtained from ADNI database. The data
contains 132 subjects with 34 subjects diagnosed with early mild cognitive impairment (EMCI), 34
with late mild cognitive impairment (LMCI), 29 with Alzheimer's disease (AD) and 35 matched
healthy controls [7]. More information about this database can be obtained from http://adni.loni.usc.
edu.

Unlike the other three datasets, the data for subjects with PTSD and post-concussion syndrome
(PCS) were acquired in-house at the Auburn University MRI Research Center. It consists of rs-fMRI data
acquired from 87 active duty male US Army soldiers (who served in the wars in Iraq and/or
Afghanistan) with 28 combat controls, 17 diagnosed with only PTSD, and 42 diagnosed with both PCS
and PTSD. The subject groups were matched for age, race, education and deployment history. More
information about the diagnosis of the subjects for PTSD or for both PCS and PTSD can be found in
Lanka et al. [1] as well as in our previous publications [9e12]. The procedure and the protocols in this
study were approved by the Auburn University Institutional Review Board (IRB) and the Headquarters
U.S. Army Medical Research and Material Command, IRB (HQ USAMRMC IRB). The participants were
scanned in a Siemens 3T MAGNETOM Verio Scanner (Siemens, Erlangen, Germany) with a 32-channel
head coil. Two runs of resting-state data were acquired from all subjects using a T2* weighted
multiband echo-planar imaging (EPI) sequence with the following acquisition parameters:

http://fcon_1000.projects.nitrc.org/indi/abide/index.html
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TR ¼ 600 ms, TE ¼ 30 ms, FA ¼ 55�, multiband factor ¼ 2, Voxel size ¼ 3�3�5 mm3 and 1000 time
points. It must be noted that the brain coverage for the volumes was limited to just the cortical and
subcortical structures, with the cerebellum excluded.

2.1. Pre-processing of resting-state fMRI data and calculation of functional connectivity

Data Processing Assistant for Resting-State fMRI Toolbox (DPARSF) [13] was used for preprocessing
the rs-fMRI data. Pre-processing steps included slice timing correction, 3D volume realignment, co-
registration of the T1-weighed structural image to the mean functional image, nuisance variable
regression which included linear detrending, mean global signal, white matter and cerebrospinal fluid
signals and 6 motion parameters. The data were normalized to Montreal Neurological Institute (MNI)
template. The blood-oxygen-level-dependent (BOLD) time series from every voxel in the brain was
deconvolved by estimating the voxel-specific hemodynamic response function (HRF) using a blind
deconvolution procedure to obtain the latent neural signals [14]. The data were then temporally
filtered with a band pass filter of bandwidth 0.01e0.1 Hz. Mean time series were extracted from 200
functionally homogeneous brain regions as defined by the CC200 template [4]. After extracting the
time series, pair-wise functional connectivity (FC) between the 200 regions was calculated as the
Pearson's correlation coefficient between pairs of time series, giving us a total of 19,900 FC values.
These connectivity values were then used as features for the classification procedure. For ADHD and
PTSD datasets, we did not have whole brain coverage. Therefore, time series were obtained from only
190 regions and 125 regions respectively, lowering the number of functional connectivity paths in the
data. The connectivity measures for two of the datasets we release with this paper (ABIDE and ADHD)
are from publicly available databases containing resting-state fMRI data obtained from different sites
with different TRs. However, the PTSD dataset was acquired in-house using the same scanner and
scanning parameters while ADNI data that we have employed was also acquired on the same scanner
with identical parameters. The classifier accuracy on PTSD and ADNI datasets would represent per-
formance in a more homogeneous dataset.

2.2. Data splits for training/validation and hold-out test data

For each of the four neuroimaging datasets, we split the entire data into two sets: 80% of the data
can be used for training/validation, and the remaining 20% can be used as an independent hold-out test
data for replicating the classification performance. In a few data splits, the training/validation and test
data came from homogeneous populations, i.e. they werematched for age and acquisition site. In some
other splits, the training/validation and hold-out test datawere not matched, i.e. they had different age
range or acquisition site. Therefore, training/validation and the test data for the heterogeneous splits
werematched in race, gender and education but differed in either age range or acquisition site (but not
both). For the homogeneous split, the training/validation data and the test data were matched, in all
the factors described above along with age and acquisition site. There are two heterogeneous splits
(differing in age range or acquisition site) for ABIDE data, and one heterogonous split (differing in age
range) for PTSD and ADNI. For ADHD, unlike the other three datasets, the data was split into training/
validation and test data as released by the ADHD-200 consortium [6]. The split information is sum-
marized in Fig. 1. More information on the splits can be obtained from Lanka et al. [1].

The more training data we use, the more the classifier learns and performs better, but the flipside is
that we have less data for testing which makes it difficult to estimate the generalizability of the per-
formance of our classifiers. If we used an even split (instead of an 80:20 split), then the classifiers will
not have enough data to learn from. Unfortunately, we cannot use cross-validation accuracy as our
primary metric of performance given that it is known to inflate performance. Therefore, we split the
data into training/validation data (which uses cross-validation) and an independent hold-out test data
to essentially illustrate the difficulty in the generalization of machine learning classifiers to differences
in data acquisition site and age groups. Given these factors, we chose 80:20 split since it is a commonly
used rule-of thumb. This allowed the classifier to have enough training data to learn and still be left
with enough independent test data to get an unbiased estimate of the generalization accuracy of the
classifier.



Fig. 1. Number of subjects in each subgroup after splitting the entire data for the following datasetsd (A) autism brain imaging data
exchange (ABIDE), (B) attention deficit hyperactivity disorder-200 (ADHD-200), (C) post-traumatic stress disorder (PTSD), and (D)
Alzheimer's disease neuroimaging initiative (ADNI), into training/validation and hold-out test data. PCS: post-concussion syndrome;
ADHD eI (inattentive); ADHDeH (hyperactive/impulsive); ADHDeC (combined).
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A t-test/ANOVA with p<0.05 (FDR corrected), was performed on the features in the training/vali-
dation data to reduce the number of features to around 1000, after controlling for differences in the
head motion, age, race, and education between the groups. This was performed to reduce the
computational time and ensure that the classifiers do not overfit the data. The hold-out test datasets
were not used for feature selection by a t-test/ANOVA. Hence, it can be used to provide an unbiased
estimate of the performance of the classifiers.

3. MALINI toolbox

We developed Machine Learning in NeuroImaging (MALINI), a MATLAB (MathWorks, Natick, MA)
based toolbox which automates the entire process. It allows one to automatically extract the functional
connectivity (undirected measure based on Pearson's correlation between time series) and effective
connectivity (directed measure based on Granger causality inferred from multivariate autoregressive
models of time series [15,16]) features from the preprocessed 4D fMRI volumes. A picture of the GUI for
the toolbox is shown in Fig. 2. Firstly, the toolbox divides the entire dataset into training data and test
data based on a value entered in a data split ratio field. Using the preprocessed 4D fMRI volumes, the
toolbox extracts the time-series from the CC200 template [4], CC400 [4] or Dosenbach 160 ROIs [17].
The toolbox also gives the user a chance to use their own brain parcellation template. BOLD time series
is a convolution of the hemodynamic response function (HRF) with latent neuronal activity. Since the
HRF varies across brain regions and individuals, it affects both functional [9] and effective connectivity
metrics [18]. Therefore, blind HRF deconvolution becomes especially important to obtain reliable
connectivity metrics in the latent neural space. Considering the advantages of HRF deconvolution
[19e21], the toolbox gives the user an option to extract connectivity-based features either from the raw
BOLD-time series or from the deconvolved data after performing a blind hemodynamic deconvolution
of the time-series as detailed in Wu et al. [14]. The toolbox calculates pair-wise functional connectivity
metrics from Pearson's correlation coefficient and pair-wise effective connectivity metrics utilizing
Granger causality, either from the original time series or the HRF deconvolved latent neural time series.
Using the time series, the toolbox then calculates (i) Static functional connectivity (SFC), (ii) Dynamic
functional connectivity (DFC) [22], and (iii) Static effective connectivity (SEC) [9]. Consequently, the
user has the option of using static functional connectivity (SFC), the variance of dynamic functional
connectivity (varDFC) [23], or static effective connectivity (SEC) as features from the time series for
disease classification. The toolbox also gives the user the opportunity to directly classify any type of
feature (i.e. need not necessarily be connectivity) arranged as rows and subjects as columns in an excel
file.
Fig. 2. A snapshot of the GUI for the proposed MALINI toolbox.
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The classification procedure in the toolbox implements the classifiers in a nested cross-validation
procedure with the inner cross-validation loop used for feature selection and the outer cross-

validation loop used for performance estimation. Since the number of features obtained are
�
N
2

�

for static and dynamic functional connectivity measures and twice as many for effective connectivity,
feature reduction can help avoid overfitting and give better generalization. Reducing the features
quickly is accomplished by t-test filtering within the inner cross-validation loop to include only the
features whose means are significantly different between the groups. Consequently, the cross-
validation estimate of the classifier performance is unbiased and ensures clear separation between
feature selection and performance estimation. The users also have the option of implementing the
classifiers in a recursive cluster elimination (RCE) framework [24] for further feature elimination,
though it requires exponentially more time, as it is a wrapper method. Given the computational and
time constraints, RCE framework is recommended if the number of features is still large compared to
the number of class instances in the sample, even after t-test/ANOVA filtering. The RCE classification
procedure requires additional parameters such as the initial number of feature clusters, the final
number of feature clusters and the number of feature clusters to be eliminated at every step in the RCE
procedure. These parameters can be set in the toolbox.

The number of folds for cross-validation and the number of repetitions of the cross-validation
procedure can be set in the toolbox. The classifiers implemented in the toolbox include Probabi-
listic/Bayesian methods: Gaussian naïve Bayes (GNB), linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), sparse logistic regression (SLR), regularized logistic regression (RLR), (ii)
Kernel methods: linear and radial -basis function (RBF) kernel support vector machine (SVM) [25],
relevance vector machine (RVM), (iii) Artificial neural networks: multilayer perceptron neural net
(MLP-Net), fully connected neural net (FC-Net), extreme learning machine (ELM), linear vector
quantization net (LVQNET), (iv) Instance-based learning: k-nearest neighbors (KNN), (v) Decision tree
based ensemble methods: bagged trees [26], boosted trees, boosted stumps, random forest, rotation
forest. More information about the classifiers can be obtained from Lanka et al. [1]. The toolbox also
gives the user the opportunity tomodify the default parameters for optimizing hyperparameters in the
included classifiers. The optimal hyperparameters are chosen by a simple grid search via a linear or an
exponential search procedure. When more than one classifier is selected, the user can select the
consensus classifier, which uses the all the selected classifiers to predict the disease class of the ob-
servations in the test data (For details regarding the consensus classifier, the readers are referred to
Lanka et al. [1]).

The toolbox provides the overall accuracy (balanced and unbalanced accuracies), individual class
accuracies, and the confusion matrix. We did not add specificity, sensitivity and positive predictive
value (PPV) measures because it would be difficult to interpret such measures for multi-class classi-
fication scenarios with controls and subcategories of clinical populations. But since, the toolbox does
output the confusionmatrix, the users can use the confusionmatrix to derivemeasures that theymight
be interested in. The toolbox also gives the user an option to save the classificationmodels (outer k-fold
x no of resamples), which can then be used to predict the disease status on an independent hold-out
test dataset for replication to ensure the reliability and robustness of the classifier model obtained from
training data.
Acknowledgements

For preparing the toolbox, we modified theMATLAB code for SVM-RCE provided by Yousef et al. [27],
to utilize classifiers other than SVM in the RCE framework and extended it to multiple classes. The
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